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Rockets are defined by many variables and constraints, and ultimately deliver a payload 
to orbit at some cost. These characteristics provide the basis for an optimization problem. 
This paper describes the construction and optimization of a two-stage liquid rocket model. 
At the core of the model, the shooting method was used to calculate the fuel usage and 
ending altitude of the rocket design. The design space was examined using a multi-objective 
genetic algorithm. A wide range of feasible non-dominated rocket designs were found and 
these are presented in the paper. Sensitivity to various input parameters was also explored. 
The model will serve as a benchmark problem for future research and comparative analysis 
of a number of optimization algorithms. 

Nomenclature 

 
A = altitude 
Atarget = target orbit altitude 
Afinal = ending altitude 
Astage = staging altitude 
C = total cost 
F = fitness function 
g0 = gravitational constant for Earth 
Isp = specific impulse 
Lc = cone length 
Lf,1,2 = fuel tank length for stage 1 and 2 
Lo,1,2 = oxidizer tank length for stage 1 and 2 
Lr = rocket length 
m = wet mass 
m0 = initial wet mass 
mengine = engine mass 
mf = fuel mass 
mox = oxidizer mass 
mp = payload mass 
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mSS = Space Shuttle engine mass 
mstruct = structures mass 
ndom = number of times an individual is dominated 
p = fitness penalty from altitude 
r = radial position 
Rf = fuel tank radius 
Ro = oxidizer tank radius 
Rr = rocket radius 
T1...T5 = thrust profile parameters 
Tmax = max thrust 
TSS = Space Shuttle max thrust 
tf,1,2 = fuel tank thickness for stage 1 and 2 
to,1,2 = oxidizer tank thickness for stage 1 and 2 
tr = rocket shell thickness 
v = total velocity 
Vf,1,2 = fuel tank volume for stage 1 and 2 
Vo,1,2 = oxidizer tank volume for stage 1 and 2 

α = thrust vector deviation from normal 

α1, α2 = thrust angle profile parameters 

νa = first axial mode frequency 
νb = first bending mode frequency 

µ = standard gravitational parameter for Earth 

θ  = longitude 
θc  = cone half-angle 
ρ = atmospheric density 

ρal = aluminum density 
ρf = fuel density 
ρo = oxidizer density 
ρti = titanium density 
 

I. Introduction 

HE value delivered by a rocket is the safe transfer of payload to orbit. In this case the orbit has been defined as a  
circular Low-Earth Orbit (LEO) at an altitude of 400 km, but this can be adjusted based on mission needs. 

Increasing the payload capability of a rocket is desirable. This will enable new mission concepts such as larger 
space telescopes or more capable Mars rovers. It will also reduce mission cost, because if there is a mass surplus, 
then cheaper materials can be used. In addition, the engineering cost will be reduced, since the mass budget is less 
difficult to balance. From the point of view of a rocket manufacturer, increasing rocket capability could potentially 
increase demand, which will increase profits. 

Decreasing the cost of a rocket is also desirable and mission-enabling. Lowering program costs makes it easier 
for NASA to get approval from Congress. Commercial aspects of space such as communication satellites and space 
tourism become more appealing when launch costs drop. From a rocket manufacturer outlook, decreasing 
manufacturing costs will increase net profit, or increase demand if the savings are passed on to the consumer. 

With these facts in mind, we would like to optimize rockets to increase payload mass and decrease cost at the 
same time.  This is formally stated in Eq. (1) and Eq. (2). 

 Maximize J1 = Payload Mass (metric tons) (1) 

 Minimize J2 = Cost ($) (2) 

Several studies have been conducted on system-level rocket optimization.1-3 These studies typically take a set 
payload mass, and optimize by minimizing the rocket gross mass. This paper takes a different approach by 
performing a multiobjective optimization, with payload as one of the objective functions. This leads to a survey of 
the design space rather than a specific design, and has its own benefits. 
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Work by Schuman explored the advantages of including optimization in the design process by comparing 
concurrent design of the Space Shuttle external fuel tank with and without optimization as a tool.4 The results 
showed slight improvement when including optimization, but this led to a hypothesis that a more difficult design 
problem might have a more conclusive result. This model serves as a more complicated design problem, and also as 
a benchmark problem for future research in optimization algorithms. 

II. Model 

The model was built largely from first principles, and started as a single-stage liquid rocket. Previous work was 
used as a starting point, which influenced the structures and propulsion design significantly.5 The cost model was 
adapted from a simplified Space Shuttle external fuel tank cost model.6 

The basic model structure of the single stage liquid rocket is depicted in the left side of Fig. 1. The rocket has a 
cylindrical body and is capped with a cone. The rocket dimensions are determined by the radius Rr and the length of 
the propellant tanks. The propellant tanks hold the oxidizer and fuel, and are cylinders capped with hemispheres. 
The denser oxidizer is placed on top because this allows a greater control torque from gimbaling the engine, though 
that effect is not modeled in the current system. 

 
 

The single-stage model was expanded into a two-stage model (depicted in the right half of Figure 1) by treating 
the second stage as the payload of the first stage and applying the single-stage model twice. At a certain altitude, the 
rocket drops the first stage tanks and engine, and the model uses the ending conditions of the first stage as the initial 
conditions for the second stage. These conditions include velocity, position, and mass. 

 
As stated previously, there are two objective outputs from the model: payload mass and cost. The payload mass 

should be maximized and the cost minimized. There are three more outputs that act as constraints, the ending 
altitude and the frequencies of the first axial and bending modes of vibration. There are fifteen inputs to the system 
which comprise the design vector. These design variables are the initial wet mass, the rocket radius, the cone half-
angle, five parameters describing the thrust profile, two parameters describing the thrust-angle profile, the altitude at 
which to stage, the propellant types to use in stage one and stage two, and the structural materials used in the rocket 
body and tanks. The objectives, constraints, and design variables are included in the master table in Table 1. The 
master table also includes a list of dependent variables that are used internally in the model, and a list of parameters 
which remain constant. 
 

 
Figure 1. One-stage and two-stage rocket diagrams. 
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Table 1.  Master table of variables and parameters. 

Name Symbol Unit Description 

Objectives     

payload mass mp [kg] objective 
cost C [$] objective 

Constraint Outputs     

ending altitude Afinal [km] constraint 

axial mode freq. νa [Hz] constraint 

bending mode freq. νb [Hz] constraint 

Design Vector     

initial wet mass m0 [kg] design variable 

rocket radius Rr [m] design variable 

cone half-angle θc [rad] design variable 

thrust profile T1...T5 [N] design variable 
angle profile ca1, ca2 - design variable 

staging altitude Astage [km] design variable 

fuel type – stage 1   - design variable 

fuel type – stage 2   - design variable 

structure material   - design variable 

tank material   - design variable 

Rocket Dimensions     

length Lr [m] dependent 

thickness tr [m] dependent 

cone height Lc [m] dependent 

Oxidizer Tank Dimensions     

radius Ro [m] dependent 

length Lo,1,2 [m] dependent 

thickness to,1,2 [m] dependent 

oxidizer volume Vo,1,2 [m3] dependent 

Fuel Tank Dimensions     

radius Rf [m] dependent 

length Lf,1,2, [m] dependent 

thickness tf,1,2 [m] dependent 

fuel volume Vf,1,2 [m3] dependent 

Parameters     

air density ρ [kg/m3] parameter 

oxidizer density ρo [kg/m3] parameter 

fuel density ρf [kg/m3] parameter 

aluminum density ρal [kg/m3] parameter 

titanium density ρti [kg/m3] parameter 

orbit altitude Atarget [km] parameter 

initial inclination θ0 [rad] parameter 

final inclination θf [rad] parameter 

 
The thrust parameters T1, T2, T3, T4, and T5 define the thrust at 0 km, 50 km, 100 km, 200 km, and 400 km 

altitudes, respectively. In between these altitudes the thrust is interpolated linearly. However, this approach could be 
adapted to use a spline instead of a simple linear interpolation. Initially the model used an exponentially decaying 
thrust, but this did not capture all of the characteristics of typical actual thrust profiles.7,8  A sample thrust profile 
from the model follows in Figure 2. 

The thrust angle parameter variables α1 and α2 define the angle (with respect to a normal from the Earth’s 

surface) of the thrust vector over the course of the trajectory. α1 is the altitude in km to start turning the rocket, while 

α2 specifies the additional altitude over which to complete the turn. If the altitude is less than α1 then the angle is 

zero, and if it is greater than α1 + α2 then the angle is π/2. If it is in between then it is defined by Eq. (3). 

 angle = [1-cos(π*(A-α1)/ α2))]*π/4 (3) 

A picture of the thrust angle profile for α1 = 100 km and α2 = 200 km is shown in Figure 3. 
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The model is divided into several subsystems, and the flow of design variables is displayed as an N2 diagram 
(design dependency matrix) in Table 2. Outputs from a subsystem are shown to the left and right, and inputs to a 
subsystem are in the cells above and below. 

 
 

The design vector is output by the inputs box, and distributed to the necessary subsystems. The aerodynamics 
subsystem calculates the cone length via geometry, and calculates an estimate of the coefficient of drag using the 
simple pressure drag equation shown in Eq. (4).  This estimate is only used for premliminary calculations; a more 
complicated model is used later to account for the effects of Mach number. 

 CD = 2*sin(θc)
2 (4) 

Table 2. N2 diagram. 

Inputs θc  Rr mwet, T, 

α, Rr, 
Astage, 
prop. type 

prop. 
type 

Rr, 
material 
type 

mwet Rr, prop. 
type, material 
type 

  

  Aero CD   Lc, CD   Lc   

    Traj mprop, 
Tmax 

vmax, qmax  Afinal, ending 
conditions 

  Afinal  

      Prop mf, mo, 
meng 

mf, mo    

        Struct mstruct, νa, νb geometry,  
masses 

νa, νb 

    mpayload , 
1st stage 
conditions 

    System  mpayload 

           Cost $ 

              Output 

 

 

Figure 2.  Sample thrust profile. 

 

 

Figure 3. Sample thrust angle profile. 
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The trajectory subsystem takes in several inputs and calculates the fuel usage and final altitude via the shooting 
method. It uses the ODE (shown in Eq. (5-9)) with a state vector composed of radial position, radial velocity, 
longitude, angular velocity, and mass. The model calculates the changes in velocity using the thrust, gravity, and 
drag applied at the correct angles. Changes in mass are calculated as decreasing according to thrust level and Isp. 
The air density and temperature numbers come from the 1962 US Standard Atmosphere model.9 

 d/dt [r] = r' (5) 

 d/dt [r'] = -109*µ/r2 + r*θ
2 + (T[r,T1…T5]-D[r,v, θc,Rr])*cos(α[r,α1…α5])/m (6) 

 d/dt [θ] = θ' (7) 

 d/dt [θ'] =( T[r,T1…T5]- D[r,v, θc,Rr])*sin(α[r,α1…α5])/(r*m) (8) 

 d/dt [m] = - T[r,T1…T5]/(Isp*g0)] (9) 

 
The propulsion subsystem inputs the mass of propellant from the trajectory subsystem, divides this mass up into 

oxidizer and fuel, and adds an ullage penalty. It also calculates the mass of the engine by scaling the Space Shuttle 
engine with max thrust according to Eq. (10).5 Engine nozzle efficiency was not taken into account at different 
altitudes. 

 mengine = Tmax * mSS/TSS (10) 

The structures subsystem inputs the propellant masses and some drag quantities. It then sizes the propellant tanks 
to hold the propellant, and the rocket length to hold the tanks. Structural thicknesses are calculated based on 
loadings conditions. The tanks are sized to hold propellant at the necessary pressure, while the rocket structures are 
sized to withstand the thrust and drag loads from the point of maximum dynamic pressure, qmax. 

The cost subsystem calculates the cost for both materials and manufacturing. The material costs are based on 
material masses and engine mass. The engine is the largest of the material dry masses, and has the highest cost per 
kilogram, so it makes up the bulk of the material cost. The manufacturing cost is based on seam lengths. The cost 
parameters include cost per meter of seam and cost per kg of material. These parameters were taken from an 
external fuel tank model and have been scaled to produce numbers in the expected amounts.6,10 

Finally, the costs are summed and the payload mass is calculated according to Eq. (11). Since the wet mass was 
an input, the mass that was not used up as fuel or taken up by structures is the available payload mass. 

 mp = m – mstruct – mox – mf (11) 

The staging is handled by performing the rocket calculations twice in succession. While performing calculations 
for the first stage, the second stage is treated as payload. The calculations take place as normal for a single-stage 
rocket with staging altitude as the target altitude for the first stage. After the defined staging altitude is reached the 
payload mass is noted, and is used as the wet mass for the second stage of the rocket. Thus the model returns to the 
trajectory subsystem and uses all the ending conditions from the first stage as the beginning conditions for the 
second stage. The same set of calculations is performed again from the staging altitude to the final altitude, and the 
remaining payload is output as the final payload mass. 

Note that there is little coupling between the subsystems in the model. The only feedback is the second loop of 
calculations for the second stage, but even this is designed so that the second stage does not impact the first stage.  
Thus there is no iteration required; this implementation was chosen to allow this for faster evaluation of design 
vectors. 

The model was benchmarked against five existing rockets from the Delta line.10 These comparisons were done 
for a launch from Cape Canaveral at 28.5° inclination to the space station orbit at 407 km altitude, 51.6° inclination. 
The wet masses, rocket radii, cone angles, initial thrusts, and propellant types from the rockets were entered into the 
model. The other flight characteristics were varied until the rocket reached the correct altitude. Then the payload 
masses and costs from the model were compared to the actual values, and the results are shown in Table 3. 
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The payload masses calculated had a 10-20% error with respect to the benchmark. The error was not completely 

systematic, however, since the results for the Delta II 7925-10 simulation underestimated the payload mass, while 
the others overestimated. One caveat is that each of these rockets besides the Delta IV Medium uses solid rocket 
boosters, and the model is not built to handle solid rockets or multiple stages acting in parallel. For the cost 
estimation, the model is typically low by about 5%. Since the model cost model just works by scaling rocket 
material cost, manufacturing cost, and engine cost, this suggests that the scaling is simply set slightly too low for the 
lower range of rockets, but overestimates for larger rockets. Also, the Delta rocket costs are the costs to purchase a 
rocket, so they have a profit added on to the actual rocket cost, which this model does not cover. The mass per cost 
errors are of slightly higher magnitude, since the mass and cost errors compound for most cases. This benchmarking 
analysis suggests that the model produces reasonable results for payload masses and costs. 

III. Optimization Method 

In order to populate a Pareto front, a multi-objective genetic algorithm (MOGA) was used.11 This heuristic 
technique was chosen because discrete design variables such as material type and propellant type were used, and 
genetic algorithms handle discrete variables well. The two objectives were to maximize J1 (payload mass) and 
minimize J2 (cost). 

The code used was adapted from work by Schuman.4 Each optimization run typically used a population size of 
100 members, and a run length of 100 generations. The fitness function initialized at a maximum of 1 for each 
individual. Then it gave a small penalty of 0.01 to each design for each other design that dominated it by having a 
lower cost and higher payload capability. It also gave a penalty if the ending altitude was less than 400 km. The 
fitness was then squared to increase the gap between the more and less dominated designs. Finally, it gave zero 
fitness for designs that were otherwise infeasible. This fitness value was then used to decide which designs carried 
on to the next generation of the genetic algorithm. The fitness function for a feasible point is shown in Eq. (12). 

 F = max{1.0 – 0.01*ndom – p(Afinal), 0}2 (12) 

A variable penalty shown in Eq. (13) was used for the altitude constraint. The further the constraint was violated, 
the more severe the penalty applied. The penalty curve steepened with each generation. This is because a low curve 
would not penalize the infeasible designs enough, but a high curve would often cause the entire starting population 
to have zero fitness. By starting with a low curve and raising it, the MOGA was able to find the largest number of 
feasible designs. Example penalty curves from the 10th and 50th generations are shown in Figure 4. The lower curve 
is the 10th generation curve, and the higher, stricter curve is the 50th generation. If the penalty is greater than 1, then 

 

Table 3. Benchmarking results 

Rocket Type 

Actual  
Payload 
Mass (kg)5 

Calc. 
Payload 
Mass (kg) 

% 
Error 

Actual 
Cost 
($M)5 

Calc. 
Cost 
($M) 

% 
Error 

Actual 
mp/C 
(kg/$M)5 

Calc. 
mp/C 
(kg/$M) 

% 
Error 

Delta II 7326-
10 2294 2700 17.70 43.5 41.3 -5.06 52.74 65.38 23.97 

Delta II 7925-
10 4104 3500 -14.72 55 52.5 -4.55 74.62 66.67 -10.66 

Delta IV 
Medium 8501 9990 17.52 72.6 70.1 -3.44 117.09 142.51 21.71 

Delta IV 
Medium+ (4,2) 11455 13800 20.47 98 93.8 -4.29 116.89 147.12 25.87 

Delta IV 
Heavy 21892 24500 11.91 150 162.3 8.20 145.95 150.96 3.43 
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the fitness bottoms out at 0. This means that a penalty above the dotted line in Figure 4 would lead to an infeasible 
design. 

 p(Afinal) = [(400-Afinal)/max{1,400-4*generation}]2 (13) 

 
After each generation, individuals were chosen to mate for the next generation.  Selection was done randomly 

and proportionally according to individual fitness.  After individuals were chosen to survive, there was a chance for 
crossover and mutation during mating to produce the next generation.11 

After completing a 100 population, 100 generation run with about a five minute run time, the code would build a 
Pareto front. When sorting for the Pareto optimal points, the code only considered points that had zero penalty for 
low altitude. From the remaining points it searched for the non-dominated solutions and plotted them. 

Below are examples of the output from the genetic algorithm. Figure 5 shows all the feasible unpenalized design 
points from a 100 generation run. Typically of the 10,000 individuals, 2000-4000 will be feasible. Figure 6 shows 
the non-dominated solutions from the first plot.  The utopia point is to the lower right, with high payload of 50.7 
tons and low cost of 140.2 $M.  The utopia point combines the best instances of each objective function into a single 
point.11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice that the Pareto front made is not very well distributed and has a couple steps. Running the MOGA 

multiple times would lead to covering different ranges and help fill out the Pareto front.12 Also, the Pareto fronts 

 

 

50th generation 

10th generation 

 

Figure 5. All feasible individuals 

from a MOGA run. 

 

Figure 6. Non-dominated individuals 
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made by successive runs would sometimes be closer or farther from the utopia point. Thus Pareto fronts from 
multiple runs were combined by collecting the non-dominated individuals from each run, and then comparing them 
and keeping only the individuals which remain non-dominated across the entire ensemble. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7 shows the Pareto fronts from ten separate runs all plotted together, and Figure 8 then treats the 
complication of ten fronts as the population from which to make a new Pareto front. From Figure 7 we see that 
many of the Pareto fronts are actually significantly sub-optimal. This is a result of the randomness inherent in a 
heuristic optimization algorithm, and suggests that more computation is necessary to give confidence with the 
results. Also, in Figure 8 we see that the front is still not very smooth, though the front from the compilation does 
look better than that from the single run. The code was run many more times while varying the seeding mechanism, 
crossover and mutation rates and the plots in Figure 9 and Figure 10 were produced. 

 
 

 

Figure 9. Non-dominated points from 720 Pareto fronts 

with benchmarking points plotted 

Delta II 

Delta IV Med 

Delta IV Heavy 

 

Figure 7. Compilation of ten Pareto fronts 

 

 

 

Figure 8. Non-dominated points from ten Pareto fronts 
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Figure 9 and Figure 10 show the Pareto fronts compiled from a progressively larger number of runs. After a few 

hundred runs, the Pareto front becomes well populated, and there are only minor bumps which could reflect real 
design changes or be indications that more computation is needed. Moving from 720 to 1640 optimization runs does 
not change the shape of the Pareto front significantly, but does shift the entire Pareto front slightly towards the 
utopia point of 73.3 tons and 35.5 $M. The Pareto front is very linear, which is likely a result of the cost model 
being simple and heavily driven by engine size. 

In Figure 9 we see that the benchmark cases fall along a steeper line. One reason is that the benchmark points are 
for a different inclination and require a plane change maneuver which can be another 3 km/s of delta V, and thus a 
higher cost per payload slope is expected. The previous benchmarking analysis was a better apples-to-apples 
comparison, which is why the results seemed closer then. It is also possible that the optimizer simply finds better 
points in the model. 

From Figure 10 we see the low cost and high payload mass anchor points. From those anchor points we can 
construct a normalized space with vertices (0,0), (1,0), (0,1), and (1,1). (0,0) is the low cost anchor point, (1,1) is the 
high payload anchor point, and (1,0) is the normalized utopia point. From this utopia point we can find the closest 
design, hereafter referred to as the “best” design. 

Figure 11 shows the normalized distance to the final utopia point as an increasing number of runs was 
performed. The Average line shows the progression of the average distance of each non-dominated point, while the 
Best line shows the distance of the closest point. The average distance tended to fall a little at a time, while the best 
distance tended to fall in jumps, which suggests a greater degree of randomness. After 1640 runs and about 150 
hours of computation time, the distances do not seem to be bottomed out, so this suggests that the results would 
benefit from more computation. 

 

Figure 10. Non-dominated points from 1640 Pareto fronts 

with payload/cost isolines 

Anchor Points 

Utopia Point 
Designs increase 
in mass, size, thrust 

Designs 
increase 
in thrust 



 
American Institute of Aeronautics and Astronautics 

 

11 

 
 

IV. Results 

It is useful to visualize point designs on the Pareto front to understand the outputs of the optimizer. Only one 
point will be shown here in full detail, though the anchor points will be described as well. 

The low cost anchor point had a payload mass of 4200 kg and a cost of 35.5 $M. The design vector had a wet 
mass of 135 tons, a radius of 1.53 m, and a cone half-angle of 0.15 radians. The thrust started at about 1.5 MN, 
increased a little until the rocket reached 50 km altitude, then started dropping evenly until 400 km was reached. The 
rocket began turning at about 50 km altitude, and finished turning at about 200 km. The rocket was sized to be about 
30 m long.  Design points near the low end of the Pareto front used liquid oxygen / hydrazine propellant for the first 
stage, and liquid oxygen / liquid hydrogen propellant for the second stage. The hydrazine in the first stage has a 
higher density, so there is a trade between tank size and propulsive efficiency. It is common for the first stage of a 
rocket to use a denser fuel.10 All larger designs used only liquid oxygen / liquid hydrogen for the greater specific 
impulse, but lower density. 

The “best” point design had a payload mass of 52100 kg and a cost of 157.3 $M. The design vector had a wet 
mass of 959 tons, a radius of 3.98 m, and a cone half-angle of 0.11 radians. The rocket shape is shown in Figure 12 
(dimensions are in meters), and the thrust and thrust angle profiles are shown in Figure 13 and Figure 14 
respectively.  This rocket is sized much larger, though it is fairly proportional to the low-cost design. In the second 
stage the fuel tanks are both spherical because the model sizes them as cylinders capped with hemispheres, and the 
lower limit is when the cylinder size goes to zero. This means the model ends up with fuel tanks with wasted space, 
which is inefficient, but not a problem with the optimizer. The thrust profile has a dip at 50 km altitude, which is a 
characteristic seen in realistic rocket profiles to avoid maximum dynamic pressure.8 Overall, the thrust profile is 
consistent with real thrust profiles, and came out purely from the optimization. This design is nearly up against the 
bounds for wet mass and cone half-angle at a maximum of 1000 tons and a minimum of 0.10 radians respectively. 

In Figure 13 a sample representative thrust profile is plotted.8 This profile was scaled to have the same initial 
thrust for comparison. The sample profile has some of the same rough features as the profile found by the optimizer 
but is not exactly the same. 

Optimizer Results

0.6

0.65

0.7

0.75

0.8

0.85

0 500 1000 1500 2000

# Runs

N
o

rm
a

li
z
e

d
 D

is
ta

n
c

e
 t

o
 F

in
a

l 

U
to

p
ia

 P
o

in
t

Best

Average

 

Figure 11. Distances to the final utopia point with an increasing number of runs 
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The high payload anchor point had a payload mass of 73300 kg and a cost of 254.1 $M. The design vector had a 

wet mass of 990 tons, a radius of 4.53 m, and a cone half-angle of 0.12 radians. The thrust started at about 20 MN, 
had a pronounced dip to 15 MN at 50 km altitude, increased back up to 18 MN at 100 km, then fell to nearly zero 
thrust from 200 km up to 400 km. The rocket began turning immediately and finished turning at about 200 km 
altitude. The rocket was sized to be about 90 m long, which is actually shorter than the “best” design. This is 
because the “best” design was already near the maximum allowed wet mass, so in order to increase payload mass 
the optimizer had to increase thrust. Increasing thrust decreased the amount of flight time, and thus decreased the 
gravity losses, which led to less fuel and a smaller rocket with larger engines. 

The characteristics of the low-cost, “best,” and high-payload designs are summarized in Table 4, and the mass 
breakdowns are shown in Table 5. One characteristic which was constant throughout the Pareto front was that the 
staging altitude was near the final altitude of 400 km.  What this means is that with the model used, it was found best 
to use the first stage to reach altitude and the second stage to perform circularization of the orbit.  This is similar to 
the role the S-IVB played in Apollo for the Saturn rocket.10

 

 

Figure 13. Thrust profile for "best" design 

8

 

Figure 14. Thrust angle profile for "best" design 
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V. Sensitivity Analysis 

A sensitivity analysis was carried out by making small perturbations in parameters from the “best” design point, 
and examining the effects on the payload mass and cost. The sensitivities shown are normalized by taking the 
gradient and dividing by magnitude according to Eq. (14). The results are shown in Figure 15 to Figure 18. The 
positive delta is for a 0.1% positive perturbation, and the negative delta is for a 0.1% negative perturbation. 

 Normalized Sensitivity = ∆%performance / ∆%variation (14) 

Table 5. Mass breakdowns for anchor points and point closest to utopia point 

Mass (kg) Low-cost "Best" High-payload 

Structures 200 2000 3100 

Engine 3300 19800 37100 

Fuel 63000 126100 124700 

Oxidizer 63800 756700 748100 

Payload 4200 52100 73300 

Total 134800 958800 990100 

 

Table 4. Characteristics of anchor points and point closest to utopia point 

  Lost-cost “Best” High-payload 

Wet Mass (tons) 134.8 958.8 990.1 

Radius (m) 1.53 3.98 4.53 

Cone Half-Angle (rad) 0.154 0.108 0.116 

Thrust at 0 km (MN) 1.53 10.2 19.2 

Thrust at 50 km (MN) 
1.65 9.79 14.5 

Thrust at 100 km (MN) 1.28 10.1 19.1 

Thrust at 200 km (MN) 0.63 3.77 0.02 

Thrust at 400 km (MN) 0.03 0.003 0.006 

Angle Param. 1 (km) 56.9 0.40 0.34 

Angle Param. 2 (km) 177.4 327.1 212.7 

Staging Altitude (km) 
396.5 396.9 396.7 

Stage 1 Propellant 
LOX/Hydrazine LOX/LH2 LOX/LH2 

Stage 2 Propellant 
LOX/LH2 LOX/LH2 LOX/LH2 

Rocket Material 
Aluminum Aluminum Aluminum 

Tank Material 
Aluminum Aluminum Aluminum 

Payload Mass (tons) 4.2 52.1 73.3 

Cost ($M) 35.5 157.3 254.1 
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Figure 16. Normalized sensitivity of cost to design variables 
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Figure 15. Normalized sensitivity of payload mass to design variables 
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Figure 15 shows the sensitivity of the payload mass to the input variables, while Figure 16 shows the sensitivity 

of the cost. The payload mass was most sensitive to the initial wet mass. This is because the calculated payload is 
the wet mass less the structures and propellant masses, so there is a direct relationship. Notice that changing the wet 
mass or thrust in either direction decreases the payload mass, which suggests they are at a local maximum. The 
payload also had a strong relationship with initial thrust since this often determines engine size. Also, the initial 
thrust and the turning speed (the second angle parameter) seem to be the most sensitive parts of the trajectory. The 
staging altitude also had a large effect on the payload mass. The cost was most sensitive to initial thrust, since the 
cost was driven largely by engine mass. Staging altitude had a large impact, likely due to the way it affects the 
engine sizing for the second stage. 

Some of the sensitivities are either both positive or both negative for payload mass and cost. This means that 
increasing the payload mass also increases the cost, so it does not make a strictly better design. For other design 
variables, the gradients show that the payload mass could be increased while reducing cost, so the point is not at a 
local maximum, unless it is at a bound. Heuristic algorithms do not ensure optimality. Some possible reasons the 
non-optimalities exist are that the sensitivities were low so minor variations were lost in the noise, or that 
discretization of the design variables did not allow the variables to be exact. This suggests that it could be useful to 
follow up with a gradient search. For the staging altitude variable the sensitivities are large and of opposite sign, but 
this is because that variable is up against its upper bound, and would like to increase but cannot. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17 and Figure 18 show the normalized sensitivities, of the payload mass and cost respectively, to 

constants used in the model. The payload mass was most sensitive to the ullage percentage and the specific impulse. 
These directly affect the propellant used, which makes up the largest portion of the total rocket mass. The cost was 
most sensitive to the material and manufacturing costs, and also to the engine mass scaling, since the calculated 
engine cost scales directly with mass. 

Several of these parameters have opposite signs for mass and cost sensitivity, but this does not represent a 
problem with the optimizer.  What these sensitivities provide is an idea of the kinds of technology improvements 
that would provide the biggest impact to the rocket performance and cost.  From Figure 17 and Figure 18 it seems 
that propulsive efficiency offers the most benefits, and costs for materials and manufacturing are of course important 
as well. 

VI. Conclusion 

In this paper we developed a two-stage liquid rocket model with fifteen inputs, and payload mass and cost as 
outputs. The model was benchmarked and then optimized by a multi-objective genetic algorithm. After many runs, 
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Figure 17. Normalized sensitivity of payload mass 

to internal parameters 
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Figure 18. Normalized sensitivity of cost to 
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the MOGA was able to form a well-populated and fairly smooth Pareto front. There is no guarantee that these points 
are truly optimal, and a look at the sensitivity analysis suggests that they could be improved, at least slightly. 

The optimal designs all preferred slender cones, high staging altitudes, and thrust angle profiles that began 
turning early over the first half of the flight. Some of the thrust profiles demonstrated a dip to lower maximum 
dynamic pressure. The rocket total wet mass, radius, and thrusts scaled with each other pretty evenly until the wet 
mass reached its upper bound, at which point the only increases were to the thrust, and to a lesser degree the radius. 
The smallest rockets used a denser fuel for their first stage, but most of the designs used the LO2-LH2 propellant 
with the maximum efficiency at all times. 

Most of the subsystem models could be improved in fidelity. The cost model is currently based off of simple 
scalings, and would need to be much more complicated to be realistic, though the values are fairly close. Changing 
engine performance at different altitudes is not considered. Orbit circularization is handled with a simple burn at the 
end of the flight, and this may not be realistic. 

Since the final designs from the MOGA could be improved slightly by simply adjusting the design variables 
slightly, it would be interesting to examine the benefits of using a gradient-based optimizer as a final step. This 
could improve the designs slightly by guiding the Pareto points to local maxima. Further sensitivity studies could be 
done to examine the effects of the bounds and constraints. Changing the constraints means the optimizer needs to be 
rerun, so this would be a more time-consuming evaluation. Another objective could be added to the model to 
measure risk or reliability, but these are very difficult to estimate or quantify. 

The present model represents a two-stage liquid rocket model of intermediate fidelity and is available for design 
studies and optimizer benchmarking. 
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