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1 Abstract

Traditionally, the design of a transportation system has focused on either vehicle design or

the network flow, assuming the other as given. However, to define a system level architecture

for a transportation system, it is advantageous to expand the system boundary during the

design process to include the network routing, the vehicle specifications, and the operations,

which couple the vehicle(s) and the network. In this paper, the transportation architecture

is decomposed into these fundamental sub-systems by classifying the decisions required to

define each sub-system. Utilizing an integrated transportation system formulation, the design

of the transportation architecture can be obtained by concurrently optimizing the vehicle

design and network flow. This is accomplished by embedding a linear programming (LP)

solver in the perturbation step of Simulated Annealing in order to solve for the large number

of linear constraints imposed by the capacity and demand requirements of the network. The

benefits of this new formulation are illustrated through an example of an air transportation

system for an overnight package delivery network where a ten percent improvement in cost

is obtained over traditional network-flow optimization. The improvement in system cost

obtained can be attributed to the reduction in operational inefficiencies for the transportation

system.

Nomenclature

A Aircraft type

N Number of Cities

R Range (nm)
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C Cargo Capacity (lbs)

Vc Cruise Velocity (kts)

W/S Wing Loading (lbs/ft2)

T/W Thrust to Weight Ratio

Neng Number of Engines

nik Number of Aircraft on Route (i,k)

xijk Number of Packages on Route (i,j,k)

f Fixed Cost of allocating Aircraft ($/day)

m Variable Cost of utilizing Aircraft ($/hr)

(i,k) Aircraft Route that starts at Node i travels to Node k and returns to Node i

(i,j,k) Package Route that starts at Node i travels through Node k and terminates at Node j

Pij Package Demand between Cities i and j in a 24 hr Period

2 Introduction

The system-of-systems philosophy1–3 has expanded the system boundary to encompass

an integrated view of a system during the design process. Systems-of-systems are col-

lections of systems (such as air vehicles) that can operate independently, but deliver more

value when designed and operated as a coordinated ensemble. As we expand the definition

of the system under consideration, we effectively enlarge the design control volume, which

defines the boundary of inputs and outputs of the system. The interior of the control volume

is the design space under consideration, where the designer can manipulate the components

to achieve desired outputs, given the inherent physical constraints and the external con-

straints across the boundary. As the control volume expands, greater flexibility in decisions

is achieved, but with this flexibility comes an increase in problem size and complexity.

Figure 1 depicts both an aircraft with sub-system components and an air transportation

network that uses this aircraft. The control volume for vehicle design can be limited to

any single sub-system, a limited interaction of sub-systems, or the entire vehicle design.

Similarly, network optimization theory limits the control volume to encompass only the

transportation network, with the vehicle designs as given inputs to the problem. Aircraft

designers assume that network demand and routing are given and produce a vehicle design

that satisfies the operational requirements, namely the range and capacity .4 Operations

researchers on the other hand often assume that vehicle specifications are known and held

constant and seek to determine the best allocation of the fleet.5 In reality any vehicle is always

a compromise design for its intended operations. While the literature in each of the two areas
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(aircraft design, network flow optimization) taken separately is voluminous, previous work

associated with the intersection between vehicle design and network operations is surprisingly

sparse. This paper therefore focuses on the concurrent optimization of the aircraft design

and network flow, assuming that such design freedom exists, effectively enlarging the control

volume to include the aspects of Figure 1.

Maier (1998)1 defines a system-of-systems by the level of managerial and operational

independence of the components of the system. In air transportation networks, multiple

aircraft, each of which can be operated and managed independently, collaborate to satisfy

multiple independent demands. By analyzing the design of an aircraft in the context of a

transportation network, the coupling between the aircraft design and network flow can be

investigated and exploited to provide more efficient operations overall.

Traditionally, optimization of the flow in a transportation network focuses on determining

the optimal set of operations for a given vehicle or set of vehicles such that the prescribed

demand is satisfied (Ahuja, Magnanti and Orlin 1993).6 Investigations into the vehicle

routing problem (VRP) began with Dantzig and Ramser (1959)7 with model development

and a discussion of the computational approaches to obtain solutions for the truck routing

problem. Toth and Vigo (2002)8 present a detailed examination of the VRP and its variants.

Simchi-Levi et al. (2005)9 utilize transportation network modeling to solve a school bus

routing problem, where the primary constraints focused on the timing restrictions inherent

in school bus pick-ups and drop-offs. Using transportation networks, they were able to find

an optimal allocation of vehicles to routes and schedules.

For air transportation systems, the vehicle routing problem is modified slightly to incor-

porate the additional constraints inherent in flight. Yang and Kornfeld (2003)10 consider the

optimal allocation of a set of predefined vehicles for an overnight package delivery system,

where the objective is to minimize the total cost for a single day of operation. Barnhart et

al. (1998),5 combines the traditional routing problem with the fleet assignment problem to

develop a more robust methodology for defining the flight scheduling for an airline.

Recently, investigations into the design of vehicles to fulfill multiple operations have been

considered to understand the impact of these requirements on the vehicle design character-

istics. Frommer and Crossley (2006)11 compare the designs of fixed geometry and morphing

geometry aircraft, operating as a fleet, for satisfying multiple pre-defined operational sce-

narios. In Crossley et al. (2004),2 the operations, namely the routes are specified, and the

objective is to define a vehicle design that satisfies the prescribed demand at the lowest cost

for a day of operation. This work was extended by Mane and Crossley (2007)3 when the
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problem sized under consideration was increased significantly, which showed the scalability

of the approach to larger problems.

In the context of space operations, Meissinger and Collins (1999)12 examine the design of

a single multi-function orbit transfer vehicle (OTV) that not only fulfills the current mission

requirements but has the flexibility to be extended for potential future mission objectives.

Given the new space exploration initiative, an increasing number of investigations into the

design of a space exploration system that will travel to both the Moon and Mars have been

conducted. In Wooster et al. (2005)13 and Stanley et al. (2006)14 multiple pre-defined

reference missions are utilized to evaluate the design of a space transportation system for

exploration.

By expanding the system boundary to include the transportation network flow and op-

erations into the vehicle design, operational inefficiencies can be reduced, but at the cost of

increased computational complexity. The resulting model has both the mixed-integer linear

constraints inherent in network flow and routing problems as well as the non-linear analy-

sis functions required to analyze aircraft or spacecraft designs. As such, it is necessary to

find efficient solution methods to solve problems of this structure in order to obtain good

solutions in a reasonable time period.

This paper investigates the benefits of solving a concurrent aircraft design and network

flow problem. In Section 3, a decomposition of the air transportation system is presented.

Section 4 explains the optimization approach utilized to solve the combined (integrated)

transportation optimization problem. Section 5 presents the air transportation example

analyzed in this paper and compares the results obtained through the traditional design

approaches for separate network and vehicle optimization, and the concurrent optimization

approach presented in this paper. Section 6 compares and analyzes the results obtained

from the three approaches. Section 7 reviews the contributions and results presented and

discusses continuing work on this topic.

3 Problem Formulation

The integrated transportation system design problem consists of four components: the

network flow, the vehicle design, the operations constraints, and the system level objective.

As shown in Figure 2, the vehicle and the network are the sub-systems that determine the

cost of the transportation system, and the operations define the constraints that couple

them. The following sub-sections describe the models and assumptions required to define

each component of the problem.
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Network Model Formulation

The network sub-system defines the allocation of vehicles and cargo (e.g. ‘packages’) to

routes through the network, whereby the network is defined by pairs of cities that are to

be linked. In our model an aircraft flies between two cities and performs the round trip

flight once in a 24 hour period. The number of aircraft of type A flying from city i to city k

and returning is defined as nA
ik. Since only feasible routes are defined, the vehicle allocation

constraints simply impose a limit on the number of aircraft of a given type flying a given

route.

nA
ik ≤ 10 i, k = 1 . . . N ∀A (1)

The (cargo) package flow constraints ensure that the demand of each city pair is fulfilled.

Although aircraft can fly only round trips between two cities, we assume that packages may

travel through an additional city towards the destination. By defining a route (i, j, k) as

starting at city i traveling through city k and terminating at city j, the number of packages

traveling this route can be defined as xijk.

The demand constraints that govern the feasibility of the package flow are supplied in

Equation 2.
N∑

k=1

xijk = Pij i, j = 1 . . . N (2)

Here, Pij is the package demand from city i to city j, and N is the total number of cities in

the network.

Figure 3 defines both the aircraft and package variables in the context of a simple three

city network example. On the left, the first leg shows the outbound flights and the first

segment of the trip for packages. On the right, the second leg shows the return flights and

the final segment of the package routes. As shown in Figure 3 packages can be delivered

directly on the first leg (xijj), wait to be delivered on the second leg (xiji) or travel both legs

towards the destination (xijk).

Vehicle Model Formulation

The vehicle sub-system determines the architectural and performance characteristics of

the aircraft design. The design of an aircraft of type A is defined by the range (RA), capacity

(CA), cruise velocity (V A
c ), wing loading (W

S

A
), thrust-to-weight ratio ( T

W

A
), and number of
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engines (NA
eng). Equation 3 defines the range of feasible values for each of the design variables.

1, 000 nm ≤ RA ≤ 5, 000 nm

5, 000 lbs ≤ CA ≤ 250, 000 lbs

250 kts ≤ V A
c ≤ 550 kts

95 lbs
ft2

≤ W
S

A ≤ 150 lbs
ft2

0.3 ≤ T
W

A ≤ 0.4

NA
eng ∈ {1, 2, 3, 4}

(3)

Additionally, a constraint on take-off length is included to ensure that aircraft can fly out of

any major airport.

dTO =
1.21W

S

A

gρCL
T
W

A
≤ 9000 ft ∀A (4)

Here ρ is the density at sea-level, g is the gravitational constant, CL is the lift coefficient at

take-off and the factor of 1.21 is a constant to account for differences in aircraft performance

during take-off, as recommended in Anderson (1999).15

The take-off weight of the aircraft can be calculated from the design variables assuming a

simple cruise profile, as shown in Figure 4. Although, the take-off weight is not constrained

explicitly, it is a required input to the cost function described in the next section. Using a

model provided in Raymer (1999),4 a weight ratio is assigned to each segment of the cruise

profile. The weight ratios for take-off, climb, and decent/landing are typical values provided

by Raymer (1999)4 and are listed in Table 1.

The weight ratios for the cruise (WC) and loiter (WL) segments are taken from the

Breguet range and endurance equations, respectively, and are listed in Equation 5.

WA
C = exp

−RASFC

V A
c L/D

WA
L = exp

−tSFC

L/D

(5)

Here, SFC is the specific fuel consumption of the aircraft, L/D is the lift to drag ratio, and t

is the time spent loitering before landing. The nominal values of these parameters are listed

in Table 2. By multiplying the weight ratios together, the total weight ratio (WA
T ) for the

entire flight profile of vehicle A can be estimated. The fuel fraction (fA
f ) of aircraft A is

computed from the total weight ratio, as shown in Equation 6, whereby a six percent fuel

reserve is assumed.
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fA
f = 1.06

(
1−WA

T

)
(6)

The total take-off weight (WA
0 ) is defined to be the sum of the cargo weight, the weight

of the fuel for a fully loaded tank, and the structural weight of aircraft A. Rearranging this

relationship, we can express the total take-off weight of the aircraft as shown in Equation 7.

WA
0 =

WA
p

1− fA
f − sA

f

(7)

Here, the structural fraction (sA
f ) is the ratio of the structural mass to the total take-off

mass. The payload weight (WA
p ) is the total cargo mass of the aircraft plus the weight of two

crew members, since we focus on cargo flights in this paper. The cargo mass is assumed equal

to the aircraft capacity (CA), which decouples the aircraft performance constraints (e.g. on

range) from the package distribution. The structural or dry weight of the aircraft accounts for

the total unloaded and un-fueled aircraft weight and is estimated by an empirically derived

formula for vehicle mass, taken from Raymer (1999)4 and shown in Equation 8.

sA
f = 1.02WA

0
−.06 (8)

The total aircraft weight and the weight of the fuel are determined by numerically solving

the system of equations defined by Equations 7 and 8.

Operations Model Formulation

The operations of a transportation system determine how the vehicle performs on a

given route and is defined by two sets of equations: capability and capacity constraints.

The capability constraints, given in Equation 9, require that a given vehicle can not travel

between two cities whose distance is greater than the range of the aircraft (assuming that

refueling is not allowed).

dik ≤ RA i, k = 1 . . . N, ∀A (9)

To formulate the capacity constraints, we first define the capacity of route (i, k) as Gik,

as in Equation 10, and then the capacity constraints can be formulated as shown in Equation

11.

Gik =
∑

A

nA
ikC

A (10)
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N∑
j=1

xijk ≤ Gik i, k = 1 . . . N

N∑
i=1

xijk ≤ Gjk j, k = 1 . . . N

(11)

Since, we assume that a given vehicle travels only between two cities, the capacity of a

route is the same on the return leg as it is on the outbound leg.

System Objective

In this paper, the objective is to minimize the total system cost for a single day of

operation. Each aircraft has two associated cost values: a fixed cost that is associated with

an aircraft’s allocation, and a variable cost that is associated with an aircraft’s operation.

The aircraft’s performance parameters define both the fixed and variable costs for the design,

which are taken from the DAPCA IV models provided by Raymer (1999).4

The cost model uses the structural weight of the aircraft (Ws), velocity (Vc), number of

engines (Neng) and thrust per engine (Teng) as inputs to compute the research, development,

testing, and evaluation costs. These non-recurring costs are used to determine the depreci-

ation of the aircraft. The fixed cost (fA) of the aircraft is the cost per day of ownership of

aircraft A, and is equivalent to the per-day depreciation of the aircraft. The variable costs

(mA) are the recurring costs associated with the usage of aircraft A, and can therefore be

computed as the cost per hour of aircraft flight.

The total system operating costs are therefore defined as

J =
N∑

i=1

N∑
j=1

∑
A

cA
ikn

A
ik (12)

where cA
ik represents the cost of aircraft A traveling on route (i, k), as expressed in Equation

13.

cA
ik =





fA + mA 2dik

V A
c

, rA ≥ dik, i 6= k

∞ , rA < dik, i 6= k

0 , i = k

(13)

Equation 13 imposes a cost equal to the fixed cost plus twice the time required to travel

a single leg of the trip (to account for the round-trip) multiplied by the variable cost per

hour of flying the aircraft, if the aircraft can fly a given leg, as determined by the range

requirement. If an aircraft does not have the range required to travel a given leg, a very

large cost is assigned to prohibit the selection. Finally, in the current model, stopover and
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storage at a given city is free (for cargo), and therefore, same city ’transfers’ have no cost

associated with them.

4 Concurrent Design Optimization Methodology

The integrated transportation system design problem, as described above, assimilates all

of the above defined variables and constraints into a single system level problem. As such,

the design problem can be classified as a mixed integer non-linear programming problem

(MINLP), which is difficult to solve effectively (Bertsekas 1999, Bertsimas and Weismantel

2004),16.17 Typically, either simplifications are made to the constraints, or the problem is

decomposed using methods such as collaborative optimization (Braun and Kroo 1997)18

or BLISS (Sobieski (2006)).19 However, due to the special structure of the integrated

transportation system design problem, a different type of decomposition was developed to

effectively solve the problem.

Heuristic optimization algorithms are often employed to solve MINLPs since they can

handle problems of any mathematical structure. One such heuristic optimization algorithm

that provides a useful approach to design space exploration is Simulated Annealing (SA).20

SA can solve problems with mixed-integer variables and non-linear constraints and analysis

functions by perturbing the design vector and evaluating the likelihood of improving the

current objective function value by moving to a new point in the design space. In addition,

SA has the added property that the acceptance of new design points changes as the algo-

rithm evolves and thus mimics gradient based decisions near the end of the optimization.21

However, problems with many constraints can be difficult to formulate in this framework.

For highly constrained optimization problems, it is often desirable to continuously per-

turb the design variables until a feasible design vector is selected. However, for problems

with continuous variables and equality constraints, it is unlikely that random perturbations

of the design variables will produce feasible solutions. For this reason, it is desirable to

utilize methods for constraint solving that can determine a new feasible set of design points.

By embedding a linear programming (LP) solver within SA, the difficulties with satisfying

many linear constraints within the heuristic optimizer are ameliorated. This embedded op-

timization implementation is what enables an efficient solution of the coupled vehicle design

and network flow problem. Utilizing this approach, a single system level design problem can

be formulated using a heuristic optimization algorithm to navigate the design space and the

linear constraints governing the network flows and capacity constraints are computed by the

embedded LP solver to ensure a feasible package flow.
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Table 3 shows the dependence of the constraints and objective function described in Sec-

tion 3 on the variables in the problem. Here, xveh represents the vehicle design variables

presented in Equation 3, nik defines the number of aircraft on each route, and xijk is the

package flow on each route. Examining Table 3 reveals that the take-off constraint is de-

pendent only on the vehicle design variables (xveh) and the maximum aircraft constraint

depends solely on the vehicle routing variables (nik). Therefore, these decisions can be made

independent of any other information. Another important observation that can be obtained

from examining Table 3 is that both the objective function and range constraint are inde-

pendent of the package flow variables. This observation allows for the package flow variables

to be defined as a secondary decision. The demand constraints and capacity constraints are

the only two sets of constraints that involve the package flow variables. Thus, by defining

both the vehicle design and routing variables prior to the evaluation of the demand and

capacity constraints, a linear system of constraints governing only the package flow variables

is defined, which can be utilized advantageously in the optimization.

Figure 5 presents the optimization flow diagram for the integrated transportation system

design problem. The design vector consists of the aircraft design variables as well as the

network allocation variables. By perturbing the values of these variables, the optimizer

can evaluate the take-off constraint and determine if the aircraft design is feasible, given

this vehicle design constraint. Given a feasible aircraft design, the demand and capacity

constraints are evaluated by an embedded LP solver that determines if a feasible network

flow exists. If there exists a feasible solution, the current design vector is evaluated to

determine the total system cost; otherwise, the design variables are perturbed to define a

new design vector. This process continues until the algorithm converges.

5 Example Air Transportation System

To evaluate the effectiveness of the integrated transportation system design methodology

against conventional practice, a case study of an air transportation system for overnight

package delivery network, that was presented earlier by Yang and Kornfeld (2003),10 is

considered. The models described above are implemented for a network consisting of the

seven largest cities, in terms of demand, to and from Atlanta (ATL), Boston (BOS), Chicago

(ORD), Dallas (DFW), Los Angeles (LAX), New York (JFK), and San Francisco (SFO). The

distance and demand information is provided in Tables 4 and 5, respectively. The network

is assumed to have symmetric demand between each city-pair, and the network is fully

connected, where the connections represent the straight line distances between every city.

For the example network defined, traditional optimization approaches are employed to
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solve the problem in order to provide a basis for comparison for the integrated optimization

methodology presented in this paper. The traditional optimization methodology embodies

two views: network optimization with given vehicles and vehicle optimization with a given

network. The following sections detail the results of these two cases, as well as the results

of the concurrent optimization, using the framework developed in Figure 5.

Case 1: Network Optimization

In traditional network optimization a set of vehicles are defined, each with an associated

cost and capability. Using these pre-defined vehicle parameters, an optimal allocation of

vehicles to routes can be defined to meet the demand of the network. In (Yang and Kornfeld

2003),10 three types of aircraft are chosen to provide a representative sample for a small

(Plane A), medium (Plane B), and large (Plane C) airplane. Using the cost calculation

described above, the fixed and variable costs can be calculated from the vehicle characteristics

and the relevant parameters of each aircraft are given in Table 6.

Using the parameters listed in Table 6, and the network and cost models described

in Section 3, an optimal allocation of vehicles to routes can be determined by employing

CPLEX as a linear, mixed-integer optimization algorithm. For the example network defined

in Tables 4 and 5, the minimum total cost for one day of operations is $517,030 and the

optimal allocation of aircraft to routes is depicted in Figure 6.

By examining Figure 6 and Table 7, it is shown that only the medium (Plane B) and

large (Plane C) airplanes are allocated due to both the range and capacity constraints. The

solution defines Chicago as a hub and additionally routes incoming flights from every city

except San Francisco into Dallas. Since San Francisco has only two outgoing flights, it is

necessary to utilize the largest capacity aircraft on both routes to accommodate the packages.

Plane C is also allocated on the New York to Los Angeles and New York to Chicago routes,

to accommodate the large demand originating in New York.

Case 2: Vehicle Optimization

In traditional vehicle optimization the network flow is defined apriori and the vehicle

design characteristics are optimized to produce the lowest system cost. For the traditional

vehicle design optimization problem, a hub-spoke network configuration is assumed where a

single city in the network is designated as the hub and all routes in the network connect to this

city. More precisely, a hub is defined as a node with nodal degree N −1, where N represents

the number of nodes in the network. The optimal vehicle design characteristics defined are

based on the best compromise in performance for the network configuration. The vehicle
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optimization requires an algorithm that can accommodate the mixed-integer variables and

non-linear analysis functions required to define the vehicle design and allocation. As such,

Simulated Annealing (Kirkpatrick et al. 1983)20 is chosen as the optimization algorithm for

this case.

The optimal cost for this hub-spoke network and optimized cargo aircraft design is $570,720

per day and the design parameters are provided in Table 8 for the corresponding network

configuration shown in Figure 7 and detailed in Table 9.

If we examine Table 8 and Figure 7, we see that the range of the aircraft designed is

between that of Planes A and B from Case 1, since a full ≈2500 nm transcontinental flight

is not required due to the hub at ORD. The capacity of the aircraft designed by the vehicle

optimization is between that of aircraft B and C, and reflects the large demand requirements

for direct flights into Chicago. Although the vehicle is designed to reduce inefficiencies in

the network, the requirement of only using direct flights (forcing a hub at ORD) and only

allowing one single type of aircraft actually increases the system cost by ≈10% relative to

case 1.

Case 3: Concurrent Vehicle and Network Optimization

For the integrated transportation network design, the vehicle, network and operations

definition are concurrently optimized. The design vector includes variables that define both

the vehicle design and network flow, and the system is subject to the constraints that govern

the vehicle, network, and operations. The integrated transportation system design problem

is solved using the methodology described in Section 3.

If we consider the design of a single vehicle and concurrently optimize the vehicle char-

acteristics and the flow through the network for the example air transportation network,

the optimal system cost is $463,723, which is a reduction in cost of 10% over the traditional

network optimization and a reduction of 18% over the traditional vehicle optimization. The

optimal vehicle design parameters for the concurrent design optimization are listed in Table

10 and the optimal configuration is provided in Figure 8 and detailed in Table 11.

The concurrently optimized solution presented in Table 10 and Figure 8 is sized to be

slightly smaller than airplane B. The reduction in range would no longer accommodate

transatlantic flights, but does still satisfy the transcontinental distance requirements for the

New York to Los Angeles and New York to San Francisco flights. By reducing the range and

the capacity of the vehicle design slightly, a reduction in aircraft costs is obtained and it is

now cheaper to utilize more of these aircraft. Again, since direct flights are not required (a

strict hub-spoke network is not enforced) the capacity of the concurrently optimized aircraft
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is less than that of the vehicle optimization design from Case 2, but the resulting aircraft

has a greater range.

6 Discussion

The integrated transportation system design methodology exploits the coupling of the

vehicle and network by defining a more efficient set of operations for the transportation sys-

tem. This effect can best be explained and visualized by plotting the distance versus demand

of each city pair in the network (Fig. 9). In addition, vehicle design points are included by

plotting the range versus capacity of the aircraft involved in Cases 1-3. The relationship of

the vehicle design specifications to the network requirements can be interpreted as follows.

All demand points lying within the (dashed) bounding box of a vehicle design point can be

fulfilled by a single direct flight of that vehicle. Any points to the right of the vehicle design

point but below the upper bound of the box require at least one connection (stopover, hop)

as the distance exceeds the aircraft’s range. Additionally, any points above the vehicle de-

sign point but left of the right bound of the box require more than one flight as the demand

exceeds the capacity of a single vehicle.

Figure 9 displays the distance and demand of the seven city network and the vehicle

design points from all three cases, as summarized in Table 12. By examining Figure 9 we see

that the integrated optimized aircraft design (Case 3) has a range that can just handle the

distance requirements of a New York to Los Angeles and New York to San Francisco flight

(with 6% fuel margin), but the demand between these cities is almost twice the aircraft’s

capacity. If we examine Figure 8 we see that there are two flights from Los Angeles to

New York and a direct flight in each direction between New York and San Francisco, which

can accommodate the New York to Los Angeles and New York to San Francisco demand,

respectively. However, it is important to realize that some of the flow between these city

pairs may be handled by other connecting flights as there is a Boston to New York flight

that may require some of the Boston to Los Angles and Boston to San Francisco packages

be flown on the return flights from LA and San Francisco, respectively. Thus, the optimal

solution is a hybrid between a hub-and-spoke and direct architecture.

Examining Table 12 further reveals the effect of the design decisions on the overall unit

cost of the aircraft. The unit cost is defined as the cost per pound of cargo shipped per

nautical mile flown, assuming the aircraft is at full capacity and traveling the maximum range

for a round-trip flight. The unit cost allows the different aircraft designs to be compared

independently of the network routing. As expected, the smallest aircraft (Plane A) has

the largest per unit transportation cost and the largest aircraft (Plane C) has the smallest
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unit cost, which is due to the economies of scale captured by the cost models.4 Further

examination of Table 12 shows that although the unit transportation cost of the concurrent

design aircraft (Case 3) is slightly higher than the unit transportation cost of the vehicle

design aircraft (Case 2) and more aircraft are present in the Case 3 architecture than in that

of Case 2, Case 3 has a lower total system cost. This fact can be explained by the higher

functional efficiency of the Case 3 architecture.

The functional efficiency defines the percentage of utilized function in each case and is

provided in Table 13. The carrier capability utilization is defined as the ratio of the total

cargo (package) weight being transported through the network (2,284,006 lbs) to the total

capacity of each transportation architecture defined by each of the three optimization cases

for the example network. The propulsive capability utilization is defined as the ratio of the

total distance traveled in the network to the total range capability of all aircraft traveling

in the network.

Examining Table 13 reveals that the vehicle design-only solution (Case 2) has the highest

capability utilization of all three cases, yet has the highest system cost. The concurrently

optimized solution (Case 3) has the highest capacity utilization of all three solutions, and

the lowest cost. Comparing this solution with Cases 1 and 2 reveals that efficiency in

carrier utilization is more important than efficiency in propulsive capability. This observation

is supported by the dependence of design and operating costs on aircraft size, and the

assumption that the range of the aircraft is not significantly affected by the actual cargo

loading.

7 Conclusion

In this paper, a methodology for integrated transportation network design was presented.

By expanding the definition of a transportation system to include the vehicle definition as

well as the network and operations during the design process, the system control volume was

expanded to produce a systems level solution to the transportation architecture. Utilizing

the formulations developed to define the network, vehicle, and operations, a concurrent

optimization of the transportation system definition is obtained for an example network

where a ten percent improvement in cost over a traditional network analysis is realized.

Continuing work in this area centers around a relaxation of assumptions required to

define the models used. For instance, the requirement that aircraft fly only a single round trip

route could be relaxed, allowing a single aircraft to visit multiple cities before returning to the

original city; however this expansion would require tracking the flight times to ensure feasible

connections. The capacity and capability constraints were decoupled, by assuming that all
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aircraft operated at maximum capacity when evaluating aircraft capability. By including

the package flows as part of the design vector, the actual capability of the vehicle could be

assessed for a given route, but at the expense of computational complexity. Furthermore,

the fidelity of the aircraft design models could be increased to a level that would be more

effective at analyzing aircraft designs beyond the pre-concept design phase.

This research could also be extended to analyze more complex problems. In the network

models, the demand for cargo was assumed to be fixed; however in reality, demand estimates

are generally stochastic. This methodology could be extended to analyze probabilistic de-

mand or analyze the effects of a demand evolution over time to define a robust transportation

architecture. In the current design problem, only a single vehicle design was allowed. How-

ever, the problem formulation is defined such that extending the design problem to allow for

multiple aircraft designs is straight forward. Such an analysis would provide a quantitative

understanding of the appropriate fleet composition mixture and the effect of limiting the

number of aircraft types allowed. An idealized solution might provide a customized air-

craft for each route, which is clearly unrealistic in practice. In the case of multiple aircraft

types, the analysis needs to reflect the requirements of operating a heterogeneous fleet, and

therefore additional costs such as ground facility operations, maintenance and sparing and

cross-training would need to be accounted for.

The main innovation in this research lies in the problem decomposition and the embedded

optimization formulation (Figure 5, Table 3) that uses an LP solver to ensure network flow

feasibility within the non-linear aircraft design problem. This methodology was developed

to alleviate inefficiencies in the traditional Simulated Annealing framework, and along with

the decomposition approach, provide good solutions to the integrated transportation sys-

tem design problem in a reasonable time frame. Although the computational scalability of

the embedded optimization framework for the integrated formulation where larger city-pair

networks with dozens or hundreds of nodes are examined remains to be investigated, initial

investigations detailed in Taylor (2007)22 show promise for this method.

The value of this analysis is not in the actual results obtained but in the problem for-

mulation. By expanding the definition of the system to include the vehicle, network and

operations a more efficient system architecture can be obtained that reduces operating costs.

This methodology can aid in strategic planning at a cargo or passenger airline, assist with

investment decisions and fleet planning, understand the commercial success or lack thereof

of past designs, and provide aircraft designers a methodology for customizing variants and

fine tuning specifications of future aircraft, while considering underlying network demand
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and route structures.
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Table 1: Defined Weight Ratios for Simple Cruise Profile Segments
Segment Weight Ratio

Take-off 0.97
Climb 0.985
Descent/Landing 0.995
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Table 2: Parameter Values for Aircraft Design
Parameter Value

SFC (1/sec) .6
L/D 17
t (min) 30
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Table 3: Decomposition of Integrated Air Transportation System Design Problem
Variables

Equation xveh nik xijk

N-max (Eqn. 1) X
Demand (Eqn. 2) X
Take-off (Eqn. 7) X
Range (Eqn. 9) X X

Capacity (Eqn. 11) X X X
Cost (Eqn. 12) X X
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Table 4: City to City Distances for Example Air Transportation Network (nautical
miles)

ATL BOS ORD DFW LAX JFK SFO

ATL 0 934 622 688 1921 756 2179
BOS 934 0 882 1538 2629 183 2729
ORD 622 882 0 806 1767 713 1866
DFW 688 1538 806 0 1257 1360 1518
LAX 1921 2629 1767 1257 0 2454 330
JFK 756 183 713 1360 2454 0 2560
SFO 2179 2729 1866 1518 330 2560 0
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Table 5: Daily Demand for Example Air Transportation Network (lbs)
ATL BOS ORD DFW LAX JFK SFO

ATL 0 14045 31313 19984 34506 57949 37318
BOS 14045 0 27261 17398 30041 50451 32489
ORD 31313 27261 0 38788 66975 112479 72434
DFW 19984 17398 38788 0 42743 71784 46227
LAX 34506 30041 66975 42743 0 123948 79820
JFK 57949 50451 112479 71784 123948 0 134050
SFO 37318 32489 72434 46227 79820 134050 0
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Table 6: Pre-defined Aircraft Specifications for Case 1
Parameter Plane A Plane B Plane C

Capacity C (lbs) 5,000 72,210 202,100
Range R (nmi) 1,063 3,000 3,950
Velocity Vc (kts) 252 465 526
Fixed Cost f ($/day) 1,481 10,616 26,129
Linear Cost m ($/hr) 758 3,116 7,194
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Table 7: Routing Matrix for Case 1
ATL BOS ORD DFW LAX JFK SFO

ATL B B
BOS B B B
ORD
DFW B B
LAX B B
JFK B C B C
SFO C C
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Table 8: Aircraft Specifications for Case 2
Parameter New Plane Design

Capacity C (lbs) 128,050
Range R (nmi) 1,920
Velocity Vc (kts) 540
Wing Loading W

S
(lb/ft2) 134

Thrust to Weight T
W

.315
Number of Engines Neng 2
Fixed Cost f ($/day) 14,106
Linear Cost m ($/hr) 4,083
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Table 9: Routing Matrix for Case 2
ATL BOS ORD DFW LAX JFK SFO

ATL 2
BOS 2
ORD
DFW 2
LAX 3
JFK 5
SFO 4
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Table 10: Aircraft Specifications for Case 3
Parameter New Plane Design

Capacity C (lbs) 69,884
Range R (nmi) 2,560
Velocity Vc (kts) 550
Wing Loading W

S
(lb/ft2) 106

Thrust to Weight T
W

.302
Number of Engines Neng 2
Fixed Cost f ($/day) 9,633
Linear Cost m ($/hr) 2,807
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Table 11: Routing Matrix for Case 3
ATL BOS ORD DFW LAX JFK SFO

ATL 1 1 1
BOS 1 2
ORD 1 1
DFW 1 1
LAX 1 1 2 1
JFK 1 1 1
SFO 1 1 1
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Table 12: Summary of Results for Three Cases
Parameter Case 1: Case 1: Case 1: Case 2 Case 3

Plane A Plane B Plane C

Capacity C (lbs) 5,000 72,210 202,100 128,050 69,884
Range R (nmi) 1,063 3,000 3,950 1,920 2,560
Fixed Cost f ($/day) 1,481 10,616 26,129 14,106 9,633
Linear Cost m ($/hr) 758 3,116 7,194 4,083 2,807
Unit Cost ($/lbs/nmi) 3.7 · 10−4 5.9 · 10−5 4.2 · 10−5 4.4 · 10−5 5.0 · 10−5

Number Utilized 0 11 4 18 21
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Table 13: Percent-Utilization of Aircraft Capabilities for Largest Seven City Exam-
ple

Carrier Capacity Propulsive Capability
Case Utilization Utilization

Case 1 75% 40%
Case 2 50 % 61%
Case 3 78% 47%
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Figure 1: Left: Airbus 32023 with specific sub-systems defined in greater detail as
inserts. Right: Jet Blue24 air transportation network.
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Figure 2: Diagram of the Integrated Transportation System Model
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Figure 3: Description of Network Flow Variables
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Figure 4: Diagram of a Simple Cruise Profile
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Figure 5: Integrated Transportation System Design Optimization with Simulated
Annealing
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Figure 6: Optimal Configuration for Case 1
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Figure 7: Optimal Configuration for Case 2
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Figure 8: Optimal Configuration for Case 3
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Figure 9: Demand versus Distance for the Seven City Network. Aircraft design
envelopes (capacity and range) are shown superimposed as dashed boxes
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